3366763399909077
recent
أخبار ساخنة

ما الرياضيات ، و ما أهميتها؟

الخط


الرياضيات علم مواضيعه مفاهيم مجرّدة و الاصطلاحات الرّياضيّة تدلّ على الكمّ، و العدد يدلّ على كميّة المعدود و المقدار قابل للزيادة أو النّقصان و عندما نستطيع قياس المقدار نطلق عليه اسم الكمّ. لذلك عرّف بعض العلماء الرياضيات بأنّه علم القياس. تعتبر الرّياضيات لغة العلوم إذ أنّ هذه العلوم لا تكتمل إلاّ عندما نحوّل نتائجها إلى معادلات و نحوّل ثوابتها إلى خطوط بيانيّة.
تعرف الرياضيات بأنها دراسة القياس و الحساب والهندسة. هذا بالإضافة إلى المفاهيم الحديثة نسبيا و منها البنية، الفضاء أو الفراغ، و التغير و الأبعاد. و بشكل عام قد يعرفها البعض على أنها دراسة البنى المجردة باستخدام المنطق و البراهين الرياضية و التدوين الرياضي. و بشكل أكثر عمومية، قد تعرف الرياضيات أيضا على أنها دراسة الأعداد و أنماطها.
و لقد نشأت الرياضيات بقيام الإنسان بقياس ما يشاهده من ظواهر الطبيعة بناء على فطرة و خاصية في الإنسان ألا و هي اهتمامه بقياس كل ما حوله إلى جانب احتياجاته العملية فهكذا كان هناك ضرورة لقياس قسمة المقوتة (الطعام) بين أفراد العائلة و قياس الوقت و الفصول و المحاصيل الزراعية تقسيم الأراضي و غنائم الحملات الحربية و المحاسبة للتمكن من الإتجار إلى جانب علم الملاحة بالنجوم في السفر و الترحال للتجارة و الاستكشاف و القياسات اللازمة لتشييد الأبنية و المدن.
و هكذا فإن البنى الرياضية التي يدرسها الرياضيون غالبا ما يعود أصلها إلى العلوم الطبيعية، و خاصة علم الطبيعة، ولكن الرياضيين يقومون بتعريف و دراسة بنى أخرى لأغراض رياضية بحتة، لأن هذه البنى قد توفر تعميما لحقول أخرى من الرياضيات مثلا، أو أن تكون عاملا مساعدا في حسابات معينة، و أخيرا فإن الرياضيين قد يدرسون حقولا معينة من الرياضيات لتحمسهم لها، معتبرين أن الرياضيات هي فن و ليس علما تطبيقيا.
فللرياضيات دور بارز في علوم المادّة (أي الفيزياء و الكيمياء) و علم الأحياء (البيولوجيا)، فضلاً عن دوره المتميّز في العلوم الإنسانيّة
كان الكتبة البابليون منذ أكثر من 3000 عام يمارسون كتابة الأعداد وحساب الفوائد ولاسيما في الأعمال التجارية ببابل. وكانت الأعداد والعمليات الحسابية تدون فوق ألواح الصلصال بقلم من البوص المدبب. ثم توضع في الفرن لتجف. وكانوا يعرفون الجمع والضرب والطرح والقسمة. ولم يكونوا يستخدمون فيها النظام العشري المتبع حاليا مما زادها صعوبة حيث كانوا يتبعون النظام الستيني الذي يتكون من 60 رمزا للدلالة علي الأعداد من 1-60. وطور قدماء المصريين هذا النظام في مسح الأراضي بعد كل فيضان لتقدير الضرائب. كما كانوا يتبعون النظام العشري وهو العد بالآحاد والعشرات والمئات. لكنهم لم يعرفوا الصفر. لهذا كانوا يكتبون 600بوضع 6رموز يعبر كل رمز على 100.

الرّياضيّات في علوم المادّة

يبقى علم الفيزياء علماً إستقرائيّاً يعتمد في الأساس على مراقبة الظّواهر الطّبيعيّة و اختبارها، و يستطيع في أقصى حدّه التّعبير عن القوانين بلغة رياضيّة، فتكون الرّياضيّات في مجال علوم المادّة لغة تعبير أكثر منها منهج اكتشاف، و هناك حالات عديدة كانت الرّياضيّات فيها أسلوب اكتشاف و برهنة. فقد اكتشف "ليفيرييه" (أحد العلماء) بالحسابات الرّياضيّة مكان كوكب نبتون و بُعده و كتلته قبل التّحقّق من وجوده الفعلي بالرّصد و كان الفكر الرّياضي عند "نيوتن" و "أينشتاين" سابقاً إلى حدّ كبير على الاختيار، لكن يبقى الاختيار الضّامن الأخير لصحّة الاكتشافات في علوم المادّة. أمّا فرضيّة تحويل الكون برمّته إلى معادلة رياضيّة كبرى فيبقى حلماَ راود أذهان الفلاسفة و العلماء أمثال "ديكارت"، و لكن هذا الهدف الكبير يبقى محرّد فرضيّة دونها صعوبات و تجاذبات علميّة و فلسفيّة. فالعالم لا يستطيع استعمال المنهج الرّياضي الإستنباطي في سائر العلوم إلاّ إذا سلب الواقع كثيراً من مضمونه.
فاللّغة الرّياضيّة توفّر للقوانين العلميّة مزيداً من الدّقّة، و من أبرز الأمثلة على دور الرّياضيّات في علوم المادّة: قياس سرعة الرّياح، و قياس قوّة الزّلازل، و قياس الضّعط الجوّي.

الرّياضيّات في علوم الأحياء

إنّ نجاح المنهج الاختياري في علوم الأحياء هيّأها لاستعمال اللّغة الرّياضبّة الرّائجة جدّاً في مجال العلوم الفيزيوكيميائيّة. و لقد عارض بعض العلماء هذا داعيين إلى الحذر و عدم إقحام الرّياضيّات في علوم الأحياء قبل أن تمرّ هذه الأخيرة بشكل واف ٍ على مشرحة التّحليل. فالعلم الّذي يبلغ مبلغاً كافياً من التّطوّر هو الّذي يمكن أن يطمح إلى هذه الدّرجة العلميّة الرّياضيّة.
و كان علم الوراثة الأوّل من علوم الأحياء الّذي اتّبع علوم المادّة في مسارها الرّياضي، و قد طُبّقت قوانين "مندل" في المجال الحيواني بقصد تأصيل بعض الحيوانات و عزل خصائص معيّنة كاللّون و الشّكل و القدّ. و ركّز العالم "مورغان" اختياراته على ذبابة الدّروزوفيل فتوصّل إلى تحديد الجينات الوراثيّة في كروموزومات نواة الخليّة.
إنّ علماء البيولوجيا يعتبرون الإحصاءات الرّياضيّة بمثابة إستقصاء و شرح متميّز للمعطيات الطّبيّة. فإنّ قياس الثّوابت البيلوجيّة و التّسجيلات البيانيّة تشكّل لغة شائعة جدّاً في علوم الأحياء. فتخطيط الدماغ، و تخطيط القلب، و قياس نسبة الزُّلال، ، و إحصاء عدد كريات الدم الحمراء و البيضاء، و قياس النمو و الوزن كلّها ذلائل على دخول الرّياضيّات في علوم الأحياء.

الرّياضيّات في العلوم الإنسانيّة

إنّ العلوم الإنسانيّة هي الّتي تضمّ علم الاقتصاد، و الإجتماع، و التاريخ، و النفس، و الأخلاق و ما سواها. فالمجتمعات الصناعية تعتمد على اللّغة الرّياضيّة من أجل تطوير الواقع الّتي تعيش فيه، فاللاقتصاد يقوم على التّخطيط الّذي يُعتبر أسلوب للسيطرة على اقتصاد البلد و محوره الأساسي الرّياضيّات. كذلك علم الإجتماع الّذي يرتكز على الإستبيان و الجداول الإحصائيّة و الخطوط البيانيّة أثناء دراسة لحالة فقر أو نسبة الهجرة السّكّانيّة إلى الخارج أو نسبة البطالة. أمّا بالنّسبة للتّاريخ، فالرّياضيّات تجعل عمليّة التّأريخ أكثر موضوعيّة و دقّة من خلال تحديد الفترة الزّمنيّة لحادثة ما و تدوين نتائجها على مختلف الصّعد. و تُستخدم اللّغة الرّقميّة في العديد من الدّراسات لعلم النّفس خاصّة عندى قياس الفروقات الفرديّة و نسبة الذكاء. غير أنّ الرّياضيّات لا تستطيع الدّخول على علم الأخلاق بسبب الموضوعات الّتي يحويها كالإرادة و الضمير و الحرية و المسؤولية و الحق و الواجب، فهي بالأمور المعنويّة الّتي لا يصحّ معها استعمال القياس أو الكمّ.
تاريخ الرياضيات
الحضارة القديمة. من المحتمل أن أناس ما قبل التاريخ بدأوا العد أولاً على أصابعهم. وكان لديهم ـ أيضًا ـ طرائق متنوعة لتدوين كميات وأعداد حيواناتهم أو عدد الأيام بدءًا باكتمال القمر. واستخدموا الحصى والعقد الحبلية والعلامات الخشبية والعظام لتمثيل الأعداد. وتعلّموا استخدام أشكال منتظمة عند صناعتهم للأواني الفخارية أو رؤوس السهام المنقوشة.
واستخدم الرياضيون في مصر القديمة قبل حوالي 3000 عام ق.م. النظام العشري (وهو نظام العد العشري) دون قيم للمنزلة. وكان المصريون القدماء روادًا في الهندسة، وطوروا صيغًا لإيجاد المساحات وحجوم بعض المجسمات البسيطة.
ولرياضيات المصريين تطبيقات عديدة تتراوح بين مسح الأرض بعد الفيضان السّنوي إلى الحسابات المعقدة والضرورية لبناء الأهرامات.
وقد طور البابليون القدماء ـ في 2100 ق.م ـ النظام الستيني المبني على أساس العدد 60. ولا يزال هذا النظام مستخدمًا حتى يومنا هذا لمعرفة الوقت، بالسّاعات والدقائق والثواني. ولا يعرف المؤرخون بالضبط كيف طوّر البابليون هذا النظام، ويعتقدون أنه حصيلة استخدام العدد 60 كأساس لمعرفة الوزن وقياسات أخرى. وللنظام الستيني استخدامات هامة في الفلك لسهولة تقسيم العدد 60 وتفوق البابليون على المصريين في الجبر والهندسة. تواريخ مهمة في الرياضيات
3000 ق.م استخدم قدماء المصريين النظام العشري. وطوروا كذلك الهندسة وتقنيات مساحة الأ راضي.
370 ق.م عرف إيودكسس الكندوسي طريقة الاستنفاد، التي مهدت لحساب التكامل.
300 ق.م أنشأ إقليدس نظامًا هندسيًا مستخدمًا الاستنتاج المنطقي.
787م ظهرت الأرقام والصفر المرسوم على هيئة نقطة في مؤلفات عربية قبل أن تظهر في الكتب الهندية.
830م أطلق العرب على علم الجبر هذا الاسم لأول مرة.
835م استخدم الخوارزمي مصطلح الأصم لأول مرة للإشارة للعدد الذي لا جذر له.
888م وضع الرياضيون العرب أولى لبنات الهندسة التحليلية بالاستعانة بالهندسة في حل المعادلات الجبرية.
912م استعمل البتاني الجيب بدلا من وتر ضعف القوس في قياس الزوايا لأول مرة.
1029م استغل الرياضيون العرب الهندسة المستوية والمجسمة في بحوث الضوء لأول مرة في التاريخ.
1142مترجم أديلارد ـ من باث ـ من العربية الأجزاء الخمسة عشر من كتاب العناصر لأقليدس، ونتيجة لذلك أضحت أعمال أقليدس معروفة جيدًا في أوروبا.
منتصف القرن الثاني عشر الميلادي. أُدْخِلَ نظام الأعداد الهندية ـ العربية إلى أوروبا نتيجةً لترجمة كتاب الخوارزمي في الحساب.
1252م لفت نصير الدين الطوسي الانتباه ـ لأول مرة ـ لأخطاء أقليدس في المتوازيات.
1397م اخترع غياث الدين الكاشي الكسور العشرية.
1465م وضع القلصادي أبو الحسن القرشي لأول مرة رموزًا لعلم الجبر بدلاً عن الكلمات.
1514م استخدم عالم الرياضيات الهولندي فاندر هوكِي اشارتي الجمع (+) والطرح (-) لأول مرة في الصيغ الجبرية.
1533م أسس عالم الرياضيات الألماني ريجيومونتانوس، حساب المثلثات كفرع مستقل عن الفلك.
1542م ألف جيرولامو كاردانو أول كتاب في الرياضيات الحديثة.
1557م أدخل روبرت ركورد إشارة المساواة (=) في الرياضيات معتقدًا أنه لا يوجد شيء يمكن أن يكون أكثر مساواة من زوج من الخطوط المتوازية.
1614م نشر جون نابيير اكتشافه في اللوغاريتمات، التي تساعد في تبسيط الحسابات.
1637م نشر رِينيه ديكارت اكتشافه في الهندسة التحليلية، مقررًا أن الرياضيات هي النموذج الأمثل للتعليل.
منتصف العقد التاسع للقرن السابع عشرالميلادي. نشر كل من السير إسحق نيوتن وجوتفريد ولهلم ليبنتز بصورة مستقلة اكتشافاتهما في حساب التفاضل والتكامل.
1717م قام أبراهام شارب بحساب قيمة النسبة التقريبية حتى 72 منزلة عشرية.
1742م وضع كريستين جولدباخ ما عُرف بحدسية جولدباخ: وهو أنّ كلّ عدد زوجي هو مجموع عددين أوليين. ولا تزال هذه الجملة مفتوحة لعلماء الرياضيات لإثبات صحّتها أو خطئها.
1763م أدخل جسبارت مونيي الهندسة الوصفية وقد كان حتى عام 1795م يعمل في الاستخبارات العسكرية الفرنسية.
بداية القرن التاسع عشر الميلادي. عمل علماء الرياضيات كارل فريدريك جوس ويانوس بولْياي، نقولا لوباشيفسكي، وبشكل مستقل على تطوير هندسات لا إقليدية.
بداية العقد الثالث من القرن التاسع عشر. بدأ تشَارْلْز بَبَاج في تطوير الآلات الحاسبة.
1822م أدخل جين بابتست فورييهٌْ تحليل فورييه.
1829م أدخل إفاريست جالوا نظرية الزمر.
1854م نشر جورج بولي نظامه في المنطق الرمزي.
1881م أدخل جوشياه وِيلارد جبس تحليل المتجهات في ثلاثة أبعاد.
أواخر القرن التاسع عشر الميلادي. طور جورج كانتور نظرية المجموعات والنظرية الرياضية للمالانهاية.
1908م طور إرنست زيرميلو طريقة المسلمات لنظرية المجموعات مستخدمًا عبارتين غير معروفتين وسبع مسلمات.
1910-1913م نشر أَلفرد نورث وايتهيد وبرتراند رسِل كتابهما مبادئ الرياضيات وجادلا فيه أنّ كل الفرضيات الرياضية يمكن استنباطها من عدد قليل من المسلمات.
1912م بدأ ل. ي. ج. برلور الحركة الحدسية في الرياضيات باعتبار الأعداد الطبيعية الأساس في البنية الرياضية التي يمكن إدراكها حدسيًا.
1921م نشر إيمي نوذر طريقة المسلمات للجبر.
بداية الثلاثينيات من القرن العشرين الميلادي. أثبت كورت جودل أن أي نظام من المسلمات يحوي جملاً لا يمكن إثباتها.
1937م قدم أَلانْ تُورنْج وصفًا لــ " آلة تَورنج " وهي حاسوب آلي تخيلي يمكن أن يقوم بحل جميع المسائل ذات الصبغة الحسابية.
مع نهاية الخمسينيات وعام 1960م دَخَلت الرياضيات الحديثة إلى المدارس في عدة دول.
1974م طور روجر بنروز تبليطة مكونة من نوعين من المعينات غير متكررة الأنماط. واكتشف فيما بعد أن هذه التبليطات التي تدعي تبليطات بنروز تعكس بنية نوع جديد من المادة المتبلورة وشبه المتبلورة.
سبعينيات القرن العشرين ظهرت الحواسيب المبنية على أسس رياضية، واستخدمت في التجارة والصناعة والعلوم.
1980م بحث عدد من علماء الرياضيات المنحنيات الفراكتلية، وهي بنية يمكن استخدامها لتمثيل الظاهرة الهيولية.
الإغريق والرومان. يعد علماء الإغريق أول من اكتشف الرياضيات البحتة بمعزل عن المسائل العملية. أدخل الإغريق الاستنتاج المنطقي والبرهان، وأحرزوا بذلك تقدمًا مهمًا من أجل الوصول إلى بناء نظرية رياضية منظمة. وتقليديًا يعد الفيلسوف طاليس أول من استخدم الاستنتاج في البرهان، وانصبَّ جل اهتمامه على الهندسة حوالي 600 ق.م.
اكتشف الفيلسوف الإغريقي فيثاغورث، الذي عاش حوالي 550 ق.م.، طبيعة الأعداد، واعتقد أن كل شيء يمكن فهمه بلغة الأعداد الكلية أو نسبها. بيد أنه في حوالي العام 400 ق.م. اكتشف الإغريق الأعداد غير القياسية (وهي الأعداد التي لا يمكن التعبير عنها كنسبة لعددين كليين)، وأدركوا أن أفكار فيثاغورث لم تكن متكاملة. وفي حوالي 370 ق.م. صاغ الفلكي الإغريقي يودوكسوس أوف كنيدوس نظرية بالأعداد غير القياسية وطوّر طريقة الاستنفاد، وهي طريقة لتحديد مساحة المنطقة المحصورة بين المنحنيات، مهدت لحساب التكامل.
وفي حوالي 300 ق.م قام إقليدس ـ أحد أبرز علماء الرياضيات الأغريق ـ بتأليف كتاب العناصر، إذ أقام نظامًا للهندسة مبنيًا على التعاريف التجريدية والاستنتاج الرياضي. وخلال القرن الثالث قبل الميلاد عمَّم عالم الرياضيات الإغريقي أرخميدس طريقة الاستنفاد، مستخدمًا مضلعًا من 96 ضلعًا لتعريف الدائرة، حيث أوجد قيمة عالية الدقة للنسبة التقريبية باي (وهي النسبة بين محيط الدائرة وقطرها). وفي حوالي العام 150 ق.م. استخدم الفلكي الإغريقي بطليموس الهندسة وحساب المثلثات في الفلك لدراسة حركة الكواكب، وتمّ هذا في أعماله المكونة من 13 جزءًا. عرفت فيما بعد بالمجسطي أي الأعظم.
وأظهر الرومان اهتمامًا ضئيلاً بالرياضيات البحتة، غير أنهم استخدموا المبادئ الرياضية في مجالات كالتجارة والهندسة وشؤون الحرب .
الرياضيات عند العرب. قام علماء العرب المسلمون بترجمة وحفظ أعمال قدامى الإغريق من علماء الرياضيات بالإضافة إلى إسهاماتهم المبتكرة.
وألف عالم الرياضيات العربي الخوارزمي كتابًا حوالي عام 210هـ، 825م، وصف فيه نظام العد اللفظي المطور في الهند. وقد استخدم هذا النظام العشري قيمًا للمنزلة وكذلك الصفر، وأصبح معروفًا بالنظام العددي الهندي ـ العربي كما ألف الخوارزمي كذلك كتابًا قيمًا في الجبر بعنوان كتاب الجبر والمقابلة، وأخذت الكلمة الإنجليزية من عنوان هذا الكتاب.
وفي منتصف القرن الثاني عشر الميلادي أدخل النظام العددي الهندي ـ العربي إلى أوروبا نتيجة ترجمة كتاب الخوارزمي في الحساب إلى اللاتينية. ونشر الرياضي الإيطالي ليوناردو فيبوناتشي عام 1202م كتابًا في الجبر عزز من مكانة هذا النظام. وحل هذا النظام تدريجيًا محل الأعداد الرومانية في أوروبا.
وقدم فلكيو العرب في القرن الرابع الهجري، العاشر الميلادي إسهامات رئيسية في حساب المثلثات. واستخدم الفيزيائي العربي المسلم الحسن بن الهيثم أبو علي خلال القرن الحادي عشر للميلاد الهندسة في دراسة الضوء. وفي بداية القرن الثاني عشر الميلادي ألف الشاعر والفلكي الفارسي عمر الخيام كتابًا هامًا في الجبر. ووضع عالم الرياضيات الفارسي نصير الدين الطوسي في القرن الثالث عشر الميلادي نموذجًا رياضيًا إبداعيًا يستخدم في الفلك. انظر: العلوم عند العرب والمسلمين (الرِّياضيات).
عصر النهضة الأوروبية. بدأ المكتشفون الأوروبيون في القرنين الخامس عشر والسادس عشر البحث عن خطوط تجارية جديدة لما وراء البحار مما أدى إلى تطبيق الرياضيات في التجارة والملاحة، ولعبت الرياضيات كذلك دورًا في الإبداع الفني، فطبق فنانو عصر النهضة مبادئ الهندسة وابتدعوا نظام الرسم المنظوري الخطي الذي أضفى الخداع في العمق والمسافة على لوحاتهم الفنية، وكان لاختراع الطباعة الآلية في منتصف القرن الرابع عشر الميلادي أثر كبير في سرعة انتشار وإيصال المعلومات الرياضية. وواكب عصر النهضة الأوروبية كذلك تطور رئيسي في الرياضيات البحتة. ففي عام 1533م نشر عالم رياضيات ألماني اسمه ريجيومانتانوس كتابًا حقق فيه استقلالية الهندسة كمجال منفصل عن الفلك. وحقق عالم الرياضيات الفرنسي فرانسوا فييت تقدمًا في الجبر، وظهر هذا في كتابه الذي نشر عام 1591م.
الرياضيات والثورة العلمية. مع حلول القرن السابع عشر، ساهم ازدياد استخدام الرياضيات ونماء الطريقة التجريبية في إحداث تغيير جذري في تقدم المعرفة، ففي العام 1543م ألف الفلكي اليولوني نيكولاس كوبرنيكوس كتابًا قيمًا في الفلك بين فيه أن الشمس ـ وليست الأرض ـ هي مركز الكون. وأحدث كتابه اهتمامًا متزايدًا في الرياضيات وتطبيقاتها. وعلى الأخص في دراسة حركة الأرض والكواكب الأخرى. وفي عام 1614م نشر عالم الرياضيات الأسكتلندي جون نابـيير اكتشافه للوغاريتمات وهي أعداد تستخدم لتبسيط الحسابات المعقدة كتلك المستخدمة في الفلك. ووجد الفلكي الإيطالي جاليليو ـ الذي عاش في نهاية القرن السادس عشر وبداية القرن السابع عشر ـ أنه يمكن دراسة أنواع كثيرة لحركة الكواكب رياضيًا.
وبين الفيلسوف الفرنسي رينيه ديكارت في كتابه الذي نشر عام 1637م، أن الرياضيات هي النموذج الأمثل للتعليل، وأوضح ابتكاره للهندسة التحليلية مقدار الدقة واليقين اللذين تزودنا بهما الرياضيات.
وأسس الرياضي الفرنسي بيير دو فيرما، وهو أحد علماء القرن السابع عشر، نظرية الأعداد الحديثة. كما اكتشف مع الفيلسوف الفرنسي بليس باسكال نظرية الاحتمالات. وساعد عمل فيرما في الكميات المتناهية الصغر إلى وضع أساس حساب التفاضل والتكامل.
وفي منتصف القرن السابع عشر الميلادي اكتشف العلاّمة الإنجليزي السير إسحق نيوتن حساب التفاضل والتكامل. وكانت أول إشارة إلى اكتشافه هذا في الكتاب الذي نشر عام 1687م. واكتشف الرياضي والفيلسوف الألماني غوتفرين فلهلم لايبنين ـ كذلك وبشكل مستقل ـ حساب التفاضل والتكامل في منتصف عام 1670م، ونشر اكتشافاته ما بين 1684م و 1686م.
التطورات في القرن الثامن عشر الميلادي. خلال أواخر القرن السابع عشر ومطلع القرن الثامن عشر قدمت عائلة برنولي ـ وهي عائلة سويسرية شهيرة ـ إسهامات عديدة في الرياضيات. فقد قدم جاكوب برنولي عملاً رائدًا في الهندسة التحليلية، وكتب كذلك حول نظرية الاحتمالات. وعمل أخوه جوهان كذلك في الهندسة التحليلية، والفلك الرياضي والفيزياء. وساهم نقولا بن يوهان في تقدم نظرية الاحتمالات، واستخدم دانيال بن يوهان الرياضيات لدراسة حركة الموائع وخواص اهتزاز الأوتار.
وخلال منتصف القرن الثامن عشر طور الرياضي السويسري ليونارد أْويلر حساب التفاضل والتكامل وبين أنّ عمليتي الاشتقاق والتكامل عكسيتان. وبدأ عالم الرياضيات الفرنسي جَوزِيفْ لاجْرانْجْ في نهاية القرن الثامن عشر العمل لتطوير حساب التفاضل والتكامل على أسس ثابتة، فطوّر حساب التفاضل والتكامل مستخدمًا في ذلك لغة الجبر بدلاً من الاعتماد على الفرضيات الهندسية التي كانت تساوره الشكوك حولها.
في القرن التاسع عشر. اتسع نطاق التعليم العام بسرعة كبيرة وأصبحت الرياضيات جزءًا أساسيًا في التعليم الجامعي. ونشرت معظم الأعمال المهمة لرياضيات القرن التاسع عشر كمراجع. وكتب الرياضي الفرنسي أَدريان ماري ليجندر في نهاية القرن الثامن عشر وبداية القرن التاسع عشر عدة مراجع مهمة، وبحث في حساب التفاضل والتكامل والهندسة ونظرية الأعداد. ونُشرت في الثلاثينيات من القرن التاسع عشر مراجع مهمة في حساب التفاضل والتكامل لعالم الرياضيات الفرنسي أوجستين لويس كوشي، وأحرز كوشي وعالم الرياضيات الفرنسي جين ببتيست فورييه تقدمًا هامًا في الفيزياء الرياضية. وأثبت عالم الرياضيات الألماني كارل فريدريك جاوس النظرية الأساسية في الجبر، ونصها: أن لكل معادلة جذرًا واحدًا في الأقل. وأدت أعماله في الأعداد المركبة إلى ازدياد تقبلها. وطور جاوس في العشرينيات من القرن التاسع عشر هندسة لا إقليدية ولكنه لم ينشر اكتشافاته هذه، كما طور الهنغاري يانوس بولياي، والروسي نيكولاي لوباشفيسكي وبشكل مستقل ـ هندسات لا إقليدية. ونشرا اكتشافاتهما هذه نحو عام 1830م وطور الألماني جورج فريدريك ريمان في منتصف القرن التاسع عشر هندسة لا إقليدية أخرى.
ومع مطلع القرن التاسع عشر ساهمت أعمال عالم الرياضيات الألماني أوجست فرديناند ميبس في تطوير دراسة الهندسة، وسميت فيما بعد الطوبولوجيا التي تعنى بدراسة خواص الأشكال الهندسية التي لا تتغير بالثني أو المد. انظر: الطوبولوجيا.
وفي أواخر القرن التاسع عشر عمل عالم الرياضيات الألماني كَارْلْ ثُيُودورْ فَيْسْتْراس على وضع أسس نظرية متينة لحساب التفاضل والتكامل. وطوّر تلميذه جُورْجْ كانتور في العقدين الثامن والتاسع من القرن التاسع عشر نظرية المجموعات ونظرية رياضية للمالانهاية. أُنْجِزَ معظم العمل في الرياضيات التطبيقية في القرن التاسع عشر، في بريطانيا حيث طوْر تشَارْلْزْ بايبج الآلة الحاسبة البدائية. ووضع جورج بولي نظامًا في المنطق الرمزي. وقدم عالم الرياضيات الفرنسي جُولْ هنْري بوانكاريه خلال نهاية القرن التاسع عشر إسهامات في نظرية الأعداد والميكانيكا السماوية والطوبولوجيا ودراسة الموجات الكهرومغنطيسية.
حل مسائل للتسلية
فلسفات الرياضيات في القرن العشرين. أظهر العديد من علماء الرياضيات في القرن العشرين اهتماماتهم بالأساسيات الفلسفية للرياضيات. واستخدم بعض علماء الرياضيات المنطق للتخلص من التناقضات، ولتطوير الرياضيات من مجموعة من المسلمات (وهي جمل أساسية تعد صائبة).
أنشأ الفيلسوفان وعالما الرياضيات البريطانيان أَلفرد نورث وايتهد، وبرتراند راسل فلسفة للرياضيات تدعى المنطقية. وفي عملهما المشترك مبادئ الرياضيات (1910-1913م)، المكون من ثلاثة أجزاء، رأوا أن فرضيات جمل الرياضيات يمكن استنباطها من عدد قليل من المسلَّمات.
وكان عالم الرياضيات الألماني ديفيد هلبرت الذي عاش في بداية القرن العشرين منهجيًا. ويعتبر المنهجيون الرياضيات نظامًا منهجيًا بحتًا من القوانين. وقاد عمل هلبرت إلى دراسة الفضاءات المركبة ذات الأبعاد غير المنتهية.
وقاد عالم الرياضيات الهولندي ليوتسن براور ـ في بداية القرن العشرين ـ مذهب الحدْسية، واعتقد أن الناس يمكنهم فهم قوانين الرياضيات بالحدْس (المعرفة التي لا يحصل عليها بالتعليل أو التجربة).
وفي الأربعينيات من القرن العشرين برهن عالم الرياضيات النمساوي كورت جودل أنه يوجد في أي نظام منطقي نظريات لا يمكن إثبات أنها صائبة أو خاطئة بمسلمات ذلك النظام فقط. ووجد أنّ هذا صحيح حتى في مفاهيم الحساب الأساسية.
ثم خطا علماء الرياضيات خلال القرن العشرين خطوات رئيسية في دراسة البنى الرياضية التجريدية. وإحدى هذه البنى الزُّمرة، التي هي تجمُّع لعناصر، قد تكون أعدادًا، وقواعد لعملية ما على هذه العناصر، كالجمع أو الضرب. ونظرية الزمرة مفيدة في مناطق عدة في الرياضيات ومجالات مثل فيزياء الجسيمات الصغيرة.
ومنذ عام 1939م قامت مجموعة من علماء الرياضيات أغلبها من الفرنسيين بنشر سلسلة من الكتب القيمة تحت اسم نقولا بورباكي. واّخذت هذه السلسلة المنحى التجريدي باستخدامها نظام المُسلَّمات ونظرية المجموعات.
وخلال القرن العشرين برزت مجالات رياضية تخصصية جديدة شملت النظم التحليلية، وعلم الحاسوب وكان تقدم علم المنطق أساسًا لتقدم الحاسبات الكهربائية. وفي المقابل، تمكن علماء الرياضيات بفضل الحاسوب من استكمال الحسابات المعقدة بسرعة فائقة. ومنذ الثمانينيات من القرن العشرين شاع استخدام الحواسيب المبنية على النماذج الرياضية لدراسة حالة الطقس والعلاقات الاقتصادية ونظم عديدة أخرى

 عالم  رياضيات
محمد بن موسى الخوارزمي
أبو عبد الله محمد بن موسى الخوارزمي عالم رياضيات و فلك و جغرافيا ولد في خوارزم سنة 780  ، اتصل بالخليفة العباسي المأمون وعمل في بيت الحكمة في بغداد وكسب ثقة الخليفة إذ ولاه المأمون بيت الحكمة كما عهد إليه برسم خارطة للأرض عمل فيها أكثر 70 جغرافيا، وقبل وفاته في 850م/232 هـ كان الخوازرمي قد ترك العديد من المؤلفات في علوم الفلك والجغرافيا من أهمها كتاب الجبر والمقابلة الذي يعد أهم كتبه وقد ترجم الكتاب إلى اللغة اللاتينية في سنة 1135م وقد دخلت على إثر ذلك كلمات مثل الجبر Algebra والصفر Zero إلى اللغات اللاتينية.
كما ضمت مؤلفات الخوارزمي كتاب الجمع والتفريق في الحساب الهندي ، وكتاب رسم الربع المعمور ، وكتاب تقويم البلدان ، وكتاب العمل بالأسطرلاب ، و كتاب "صورة الأرض " الذي اعتمد فيه على كتاب المجسطي لبطليموس مع إضافات وشروح وتعليقات ، وأعاد كتابة كتاب الفلك الهندي المعروف باسم "السند هند الكبير" الذي ترجم إلى العربية زمن الخليفة المنصور قأعاد الخوارزمي كتابته وأضاف إليه وسمي كتابه "السند هند الصغير".
وقد عرض في كتابه (حساب الجبر والمقابلة) أو (الجبر) أول حل منهجي للمعادلات الخطية والتربيعية. ويعتبر مؤسس علم الجبر ، {1/ اللقب الذي يتقاسمه مع {2ديوفانتس. في القرن الثاني عشر، قدمت ترجمات اللاتينية عن حسابه على الأرقام الهندية، النظام العشري إلى العالم الغربي.[6] نقح الخوارزمي كتاب الجغرافيا لكلاوديوس بطليموس وكتب في علم الفلك والتنجيم.
كان لاسهاماته تأثير كبير على اللغة. "فالجبر"، هو أحد من اثنين من العمليات التي استخدمهم في حل المعادلات التربيعية. في الإنجليزية كلمة Algorism و algorithm تنبعان من Algoritmi ، الشكل اللاتيني لاسمه.[7] واسمه هو أصل الكلمة أسبانية guarismo [8] والبرتغالية algarismo وهما الاثنان بمعنى رقم.


حياته

تفاصيل قليلة هي المعروفة بدقة عن الحياة الخوارزمي، وحتى مسقط رأسه غير معروف. اسمه يدل على أنه قد جاء من خوارزم، وهي الآن مقاطعة خوارزم في أوزبكستان ، قدم إلى بغداد عاصمة العباسيين وعاصر الخليفة المأمون و عمل في بيت الحكمة،
في كتاب الفهرس لابن النديم ' نجد سيرة الذاتية قصيرة للخوارزمي، مع قائمة الكتب التي كتبها. قام الخوارزمي بعمل معظم أعماله في الفترة ما بين 813 و 833. بعد الفتح الإسلامي لبلاد فارس، أصبحت بغداد مركز الدراسات العلمية والتجارية ، وأتى اليها العديد من التجار والعلماء من مناطق بعيدة مثل الصين والهند، كما فعل الخوارزمي. كان يعمل في بغداد، وهو باحث في بيت الحكمة الذي أنشأه الخليفة المأمون، حيث درس العلوم والرياضيات ، والتي تضمنت ترجمة المخطوطات اليونانية والسنسكريتية العلمية.

إسهاماته

ساهم الخوارزمي في الرياضيات، الجغرافيا، علم الفلك ، وعلم رسم الخرائط، و أرسى الأساس للابتكار في الجبر وعلم المثلثات. له أسلوب منهجي في حل المعادلات الخطية والتربيعية أدى إلى الجبر ، وهي كلمة مشتقة من عنوان كتابه حول هذا الموضوع، (المختصر في حساب الجبر والمقابلة) .
كتب عن حساب الأرقام الهندية ' حوالي 825 كتاب، كانت مسؤولة بشكل أساسي عن نشر نظام ترقيم الهندي في جميع أنحاء الشرق الأوسط وأوروبا. و ترجم اللاتينية إلى Algoritmi de numero Indorum. من الخوارزمي، أتت الكلمة اللاتينية Algoritmi ،التي أدت إلى مصطلح "الخوارزمية".
أعتمدت بعض أعماله على علم الفلك الفارسي والبابلي، والأرقام الهندية ، والرياضيات اليونانية.
نظم الخوارزمي وصحح بيانات بطليموس عن أفريقيا والشرق الاوسط. من كتبه الرئيسية كتاب "صورة الأرض"، الذي يقدم فيه إحداثيات الأماكن التي تستند على جغرافية بطليموس ولكن مع تحسن القيم للبحر الأبيض المتوسط وآسيا وافريقيا. كما كتب أيضا عن الأجهزة الميكانيكية مثل الأسطرلاب، ومزولة.
وساعد في مشروع لتحديد محيط الأرض، وفي عمل خريطة للعالم للخليفة للمأمون، وأشرف على 70 جغرافي.
في القرن الثاني عشر أنتشرت أعماله في أوروبا، من خلال الترجمات اللاتينية ، التي كان لها تأثير كبير على تقدم الرياضيات في أوروبا.


(الكتاب المختصر في حساب الجبر والمقابلة) هو كتاب رياضي كتب حوالي عام 830 م. ومصطلح الجبر مشتق من اسم أحدى العمليات الأساسية مع المعادلات ' التي وصفت في هذا الكتاب. ترجم الكتاب اللاتينية تحت اسم Liber algebrae ét almucabala بواسطة روبرت تشستر (سيغوفيا ، 1145)، وأيضا ترجمه جيرارد أوف كريمونا. وتوجد نسخة عربية فريدة محفوظة في أوكسفورد ترجمت عام 1831 بواسطة إف روزين. وتوجد ترجمة لاتينية محفوظة في كامبريدج.[10]
' ويعتبر الجبر هو النص التأسيسي للجبر الحديث . فهو قدم بيانا شاملا لحل المعادلات متعددة الحدود حتى الدرجة الثانية، [11] ، وعرض طرق أساسية "للحد" و "التوازن" في إشارة إلى نقل المصطلحات المطروحة إلى الطرف الآخر من المعادلة، أي إلغاء المصطلحات المتماثلة على طرفي المعادلة.[12]
طريقة الخوارزمي في حل المعادلات التربيعية الخطية عملت في البداية بخفض لمعادلة لواحدة من ست نماذج قياسية (حيث ب و ج أرقام إيجابية صحيحة)
·                     ترابيع تساوي الجذور (ax2 = bx)
·                     ترابيع تساوي عدد (ax2 = c)
·                     جذور تساوي عدد (bx = c)
·                     ترابيع وجذور تساوي عدد (ax2 + bx = c)
·                     ترابيع وعدد تساوي جذور (ax2 + c = bx)
·                     جذور ورقم تساوي ترابيع (bx + c = ax2)
وبقسمة معامل التربيع باستخدام عمليتين هما الجبر و المقابلة، الجبر هي عملية إزالة الوحدات والجذور والتربيعات السلبية من المعادلة ، وذلك بإضافة نفس الكمية إلى كل جانب. فعلى سبيل المثال ، x2 = 40x − 4x2 تخفض إلى 5x2 = 40x ، والمقابلة هي عملية جلب كميات من نفس النوع لنفس الجانب من المعادلة. فعلى سبيل المثال ، x2 + 14 = x + 5 تخفض إلى x2 + 9 = x.
وكتب أر راشد وأنجيلا ارمسترونج :
«نص الخوارزمي يمكن أن ينظر إليه على أنها متميز، ليس فقط من الرياضيات البابلية ، ولكن أيضا من كتاب 'آريثميتيكا " ديوفانتوس, انها لم تعد حول سلسلة من المشاكل التي يجب حلها ، ولكن كتابة تفسيرية تبدأ مع شروط بدائية فيها التركيبات يجب أن تعطي كل النماذج الممكنة للمعادلات، والتي تشكل الموضوع الحقيقي للدراسة. من ناحية أخرى، فإن فكرة المعادلة ذاتها تظهر من البداية ، ويمكن القول، بصورة عامة ، أنها لا تظهر فقط في سياق حل مشكلة، ولكنها تدعو على وجه التحديد إلى تحديد فئة لا حصر لها من المشاكل."[14]»

الإنجاز الثاني للخوارزمي كان في علم الحساب، توجد الأن الترجمة اللاتينية له و لكن فقدت النسخة العربية الأصلية. تمت الترجمة على الأرجح في القرن الثاني عشر بواسطة أديلارد أوف باث، الذي ترجم أيضا الجداول الفلكية في 1126.
كانت المخطوطات اللاتينية بلا عنوان، ولكن يشار إليها بأول كلتمين تبدا بها : Dixit algorizmi أو (هكذا قال الخوارزمي) ، أو Algoritmi de numero Indorum (الفن الهندي في الحساب للخوازرمي)" ، وهو الاسم الذي أطلقه بالداساري بونكومباني على العمل في 1857. العنوان الأصلي العربية ربما كان [46] [15] "كتاب الجمع والطرح ووفقا للحساب الهندي" [16]
عمل الخوارزمي الحسابي كان هو مسؤول عن إدخال الأرقام العربية على أساس نظام الترقيم الهندي العربي المطور في الرياضيات الهندية، إلى العالم الغربي. مصطلح "الخوارزمية" مستمد من ألجورسم، أسلوب الحساب بالارقام الهندية والعربية الذي وضعه الخوارزمي. كلا من كلمتي "خوارزمية" و "ألجوريسم" مستمدين من الأشكال اللاتينية لاسم الخوارزمي Algoritmi وAlgorismi على التوالي.
أخترع الخوارزمي أيضا أول أداة ربعية وأداة قياس الأرتفاع في بغداد في القرن التاسع الميلادي. ، اخترع الخوارزمي ، أيضا أداة الربع المجيب الذي كانت تستخدم للحسابات الفلكية وأخترع أيضا أول الربع الحراري لتحديد دائرة عرض، في بغداد ، ثم مركز تطوير الربعيات وكان يستخدم لتحديد الوقت (وخاصة أوقات الصلاة) من خلال مراقبة الشمس أو النجوم. كانت أداة الربعية أداة عالمية، وهي أداة رياضية مبتكرة اخترعها الخوارزمي في القرن التاسع وعرفت فيما بعد باسم (الربعية القديمة) في أوروبا في القرن الثالث عشر. ويمكن استخدامها في أي دائرة عرض على الأرض وفي في أي وقت من السنة لتحديد الوقت في بالساعة من الارتفاع من الشمس. وكان هذا ثاني أكثر أداة الفلكية تستخدم على نطاق واسع خلال القرون الوسطى بعد الأسطرلاب. وأحد استخداماتها الرئيسية في العالم الإسلامي هو تحديد أوقات الصلاة.

الجغرافيا

ثالث عمل رئيسي للخوارزمي هو  كتاب صورة الأرض "وكتاب عن ظهور الأرض" ا ، الذي كان في المركز 833. وهو نسخة منقحة وكاملة من كتاب الجغرافيا لكلاوديوس بطليموس،
ليس هناك سوى نسخة واحدة موجودة من كتاب صورة الأرض  ، محفوظة في مكتبة جامعة ستراسبورغ. والترجمة اللاتينية محفوظة في المكتبة الوطنية لإسبانيا في مدريد. العنوان الكامل للكتاب هو كتاب مظهر الأرض ، ومدنها، والجبال والبحار، وجميع الجزر والأنهار ، كتبه أبو جعفر محمد بن موسى الخوارزمي، وفقا لمقالة جغرافية كتبها الجغرافي بطليموس ذا كلاوديان .
لا تشمل النسخة العربية ولا نسخة الترجمة اللاتينية خريطة العالم نفسها، ولكن تمكن هوبرت دانشت من إعادة بناء الخريطة المفقودة من قائمة الإحداثيات. قرأ دانشت خطوط العرض وخطوط الطول الساحلية من النقاط الواردة في المخطوطة ، أو يتوصل إليها من حيث السياق ليست مقروءة. انه نقل النقاط على ورقة الرسم البياني ولها علاقة مع الخطوط المستقيمة ، والحصول على تقريب الساحل كما كان على الخريطة الأصلية. ثم فعل الشيء نفسه بالنسبة للأنهار والمدن. .

التقويم العبري

كتب الخوارزمي العديد من الأعمال من بينها بحث عن التقويم العبري بعنوان "رسالة في استخراج تاريخ اليهود". يصف فيه دورة ميتون التي تمتد ل19 عاما ، وقواعد تحديد أي يوم من الأسبوع سيكون اليوم الأول لشهر تِشريه؛ بحساب الفترة الفاصلة بين يوم العالم والعصر السلوقي، ويعطي قواعد تحديد خط الطول المتوسط من الشمس والقمر باستخدام التقويم العبري. ووجدت مواد مشابهة في أعمال البيروني وابن ميمون

مؤلفات أخرى

العديد من المخطوطات العربية في برلين واسطنبول وطشقند والقاهرة وباريس تحتوى على المواد أكيدة أو محتمله للخوارزمي. تتضمن مخطوطة اسطنبول ورقة عن الساعات الشمسية، التي ورد ذكرها في كتاب الفهرس. أوراق أخرى، مثل واحدة عن تحديد اتجاه مكة المكرمة، عن علم الفلك الكروي.
تناول نصين اهتماما بحساب مسافة عرض الصباح وهم (معرفة ساعة المشرق في كل بلد)، و(معرفة السمت من قبل الارتفاع. ، كما ألف أيضا كتابين عن بناء واستخدام الأسطرلاب . ذكرهم ابن النديم في كتابه (فهرس الكتب العربية) وهم (كتاب المزولات) و (كتاب التاريخ) ، ولكن الكتابين فقدوا.
تشكل الرياضيات لدينا يمكن أن يعود إلى الخوارزمي. فكتابه "حساب الجبر والمقابلة "، غطي المعادلات الخطية والتربيعية، حل الخلل في التوازن التجاري والميراث والمسائل والمشكلات الناجمة عن مسح وتخصيص الأرضي. بصورة عابرة ، كما أدخل استخدام النظام العددي الذي نستخدمه حاليا ، والتي حل محل النظام الروماني القديم.



www.logatelro7.com 


نموذج الاتصال
NomE-mailMessage